Fractionation and mobility of phosphorus in a sandy forest soil amended with biosolids.
نویسندگان
چکیده
GOAL, SCOPE AND BACKGROUND Biosolids, i.e., treated sewage sludge, are commonly used as a fertilizer and amendment to improve soil productivity. Application of biosolids to meet the nitrogen (N) requirements of crops can lead to accumulation of phosphorus (P) in soils, which may result in P loss to water bodies. Since 1996, biosolids have been applied to a Pinus radiata D. Don plantation near Nelson City, New Zealand, in an N-deficient sandy soil. To investigate sustainability of the biosolids application programme, a long-term research trial was established in 1997, and biosolids were applied every three years, at three application rates, including control (no biosolids), standard and high treatments, based on total N loading. The objective of this study was to evaluate the effect of repeated application of biosolids on P mobility in the sandy soil. MATERIALS AND METHODS Soil samples were collected in August 2004 from the trial site at depths of 0-10, 10-25, 25-50, 50-75, and 75-100 cm. The soil samples were analysed for total P (TP), plant-available P (Olsen P and Mehlich 3 P), and various P fractions (water-soluble, bioavailable, Fe and Al-bound, Ca-bound, and residual) using a sequential P fractionation procedure. RESULTS AND DISCUSSION Soil TP and Olsen P in the high biosolids treatment (equivalent to 600 kg N ha(-1) applied every three years) had increased significantly (P<0.05) in both 0-10 cm and 10-25 cm layers. Mehlich 3 P in soil of the high treatment had increased significantly only at 0-10 cm. Olsen P appeared to be more sensitive than Mehlich 3 P as an indicator of P movement in a soil profile. Phosphorus fractionation revealed that inorganic P (Al/Fe-bound P and Ca-bound P) and residual P were the main P pools in soil, whereas water-soluble P accounted for approximately 70% of TP in biosolids. Little organic P was found in either the soil or biosolids. Concentrations of water-soluble P, bioavailable inorganic P (NaHCO3 Pi) and potentially bioavailable inorganic P (NaOH Pi) in both 0-10 and 10-25 cm depths were significantly higher in the high biosolids treatment than in the control. Mass balance calculation indicated that most P applied with biosolids was retained by the top soil (0-25 cm). The standard biosolids treatment (equivalent to 300 kg N ha(-1) applied every three years) had no significant effect on concentrations of TP, Mehlich 3 P and Olsen P, and P fractions in soil. CONCLUSIONS The results indicate that the soil had the capacity to retain most biosolids-derived P, and there was a minimal risk of P losses via leaching in the medium term in the sandy forest soil because of the repeated biosolids application, particularly at the standard rate. RECOMMENDATIONS AND PERSPECTIVES Application to low-fertility forest land can be used as an environmentally friendly option for biosolids management. When biosolids are applied at a rate to meet the N requirement of the tree crop, it can take a very long time before the forest soil is saturated with P. However, when a biosolids product contains high concentrations of P and is applied at a high rate, the forest ecosystem may not have the capacity to retain all P applied with biosolids in the long term.
منابع مشابه
Decay of enteric microorganisms in biosolids-amended soil under wheat (Triticum aestivum) cultivation.
There is a growing need for better assessment of health risks associated with land-applied biosolids. This study investigated in-situ decay of seeded human adenovirus (HAdV), Salmonella enterica, Escherichia coli, and bacteriophage (MS2) in biosolids-amended soil under wheat cultivation. The biosolids seeded with microorganisms were placed in decay chambers which were then placed in the topsoil...
متن کاملNutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil.
Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising fro...
متن کاملLand application of sewage sludge (biosolids) in Australia: risks to the environment and food crops.
Australia is a large exporter of agricultural products, with producers responsible for a range of quality assurance programs to ensure that food crops are free from various contaminants of detriment to human health. Large volumes of treated sewage sludge (biosolids), although low by world standards, are increasingly being recycled to land, primarily to replace plant nutrients and to improve soi...
متن کاملChemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolids-amended clay soils.
An incubation experiment was conducted to study the chemical speciation and extractability of three heavy metals in two contrasting biosolids-amended clay soils. One was a paddy soil of pH 7.8 and the other was a red soil of pH 4.7 collected from a fallow field. Anaerobically digested biosolids were mixed with each of the two soils at three rates: 20, 40 and 60 g kg(-1) soil (DM basis), and una...
متن کاملSorption and desorption of cadmium by different fractions of biosolids-amended soils.
To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science and pollution research international
دوره 14 7 شماره
صفحات -
تاریخ انتشار 2007